Please help Immediately! These are two examples of Console Application abiut VB.Net. Read these two below & display/post/write your program. (It is not homework)
HELP!!!
1) Interest on a loan is paid on a declining balance, & hence a loan w/ an interest rate of, say, 14% can cost significantly less than 14% of the balance. Display your program that takes a loan amount & interest rate as input & then outputs the monthly payments &balance of the loan until the loan is paid off. Assume that the monthly payments are 1/20th of the original loan amount & that any amount in excess of the interest is credited toward decreasing the balance due. Thus, on a loan of $20,000, the payments would be $1,000 a month. If the interest rate is 10%, then each month the interest is 1/12th of 10% oe the remaining balance. The 1st month (10% of $20,000)/12, or $166.67, would be paid in interest, & the remaining $833.33 would be (10% of $19,166.67)/12, & so forth. Also, have the program output the total interest paid over the life of the loan. Finally, determine what simple annualized percentage of the original loan balance was paid in interest. For example, if $1,000 was paid in the interest on a $10,000 loan & it took 2 years to pay off, then the annualized interest is $500, w/c is 5% of the $10,000 loan amount.
2) The Fibonacci nos. F sub n are defined as follows: F sub 0 is 1, F sub 1 is 1, & F sub (i+2) = F sub 1 + F sub (i+1), for i = 0, 1, 2, ... In other words, each no. is the sum of the previous 2 nos. The 1st few Fibonacci nos. are 1, 1, 2, 3, 5, & 8. These nos. occur as certain population growth rates. If a population has no deaths, then the series shows the increase in population after each generation. A generation is the time it takes a member to reach reproducing age. The formula applies most straightfowardly to asexual reproduction at a rate of one offspring per generation. In any event, the green crud population grows at that rate & produces one generation every 5 days. Hence if a green crud population starts out as 10 lbs. of crud, in 15 days, 30 lbs.; in 20 days, 50 lbs., & so forth. Display your program that takes the initial size of a green crud population (in lbs.) & a no. of days. Assume that the population size is the same for 4 days & then increases every 5th day.
Last edited: